If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 225p2 + -40p + 12 = 0 Reorder the terms: 12 + -40p + 225p2 = 0 Solving 12 + -40p + 225p2 = 0 Solving for variable 'p'. Begin completing the square. Divide all terms by 225 the coefficient of the squared term: Divide each side by '225'. 0.05333333333 + -0.1777777778p + p2 = 0 Move the constant term to the right: Add '-0.05333333333' to each side of the equation. 0.05333333333 + -0.1777777778p + -0.05333333333 + p2 = 0 + -0.05333333333 Reorder the terms: 0.05333333333 + -0.05333333333 + -0.1777777778p + p2 = 0 + -0.05333333333 Combine like terms: 0.05333333333 + -0.05333333333 = 0.00000000000 0.00000000000 + -0.1777777778p + p2 = 0 + -0.05333333333 -0.1777777778p + p2 = 0 + -0.05333333333 Combine like terms: 0 + -0.05333333333 = -0.05333333333 -0.1777777778p + p2 = -0.05333333333 The p term is -0.1777777778p. Take half its coefficient (-0.0888888889). Square it (0.007901234570) and add it to both sides. Add '0.007901234570' to each side of the equation. -0.1777777778p + 0.007901234570 + p2 = -0.05333333333 + 0.007901234570 Reorder the terms: 0.007901234570 + -0.1777777778p + p2 = -0.05333333333 + 0.007901234570 Combine like terms: -0.05333333333 + 0.007901234570 = -0.04543209876 0.007901234570 + -0.1777777778p + p2 = -0.04543209876 Factor a perfect square on the left side: (p + -0.0888888889)(p + -0.0888888889) = -0.04543209876 Can't calculate square root of the right side. The solution to this equation could not be determined.
| -4(4n-6)=152 | | 4-6q=28 | | 2x+y=zforx | | 10r-r=9 | | 16.08+16r+15.13=0.97+13.3r | | 7+4n=-13 | | x-y=zforx | | (x^3)(15x^4)= | | 3z+5=6z | | 4y=8x-8 | | X^2-7xy+49y^2=0 | | m^2-3m=2m | | 5-2(3x+1)=7x-11 | | -3.4d=-1.08-3.6d | | 3(2x+1)=7(2x-5)-2 | | (3+u)(5u+8)=0 | | 5(8x+10)=40x-7 | | r^2-12r+5=0 | | 2-ab=cfora | | -18m-14=-17m | | an=-3n+1 | | -3y=-8x | | 12n-12n+2=20-2n | | 3x+8=3x-10 | | 2y=-3x-16 | | -18h+18=4-20h | | B-13=-134 | | 111=6c+35 | | x-2y=zfory | | y=-6x-3slope | | E(1)=2n | | 2x^2+7X=7 |